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ABSTRACT5

We describe a new approach for emulating the output of a fully coupled climate model under6

arbitrary forcing scenarios that is based on a small set of precomputed runs from the model.7

We express temperature and precipitation as simple functions of the past trajectory of at-8

mospheric CO2 concentrations and fit a statistical model using a limited set of training runs.9

We demonstrate that the approach is a useful and computationally efficient alternative to10

pattern scaling that captures the nonlinear evolution of spatial patterns of climate anomalies11

inherent in transient climates. The approach does as well as pattern scaling in all circum-12

stances and substantially better in many; it is not computationally demanding; and, once13

the statistical model is fit, produces emulated climate output effectively instantaneously. It14

may therefore find wide application in climate impacts assessments and other policy analyses15

requiring rapid climate projections.16
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1. Introduction17

The wide consensus among the scientific community that climate is changing and will18

almost certainly produce detrimental impacts for humanity (IPCC AR4; Meehl et al. (2007))19

means that attention is increasingly turning to evaluating the magnitude of those impacts and20

possible policies to reduce them. Atmosphere-Ocean General Circulation Models (AOGCMs)21

are state-of-art tools for producing climate predictions based on our best understanding of22

the radiative effects of CO2 and other anthropogenic forcing agents and the complex dy-23

namical feedbacks of the Earth’s climate system. However, the computational demands of24

AOGCMs preclude or limit their use in the context of integrated assessment models (IAMs)25

used to estimate climate damages and the cost-benefit trade-offs of potential mitigation26

actions. Analyses that involve optimal policy determination or uncertainty quantification27

require repeated iterations of climate projections in response to forcing trajectories over the28

decadal or centennial timescale, which is computationally prohibitive with AOGCMs. For29

IAMs whose only climate input is global mean temperature (GMT), climate projections can30

be provided instead by simple energy-balance models tuned to the climate sensitivity of31

AOGCMs. Climate changes and impacts will not be uniform across the Earth, however, and32

more advanced IAMs may require regional climate predictions. There is increasing need for33

techniques that can capture the regional information provided by AOGCMs and produce34

tools useful for the impacts assessment community.35

The most common approach for producing such regional projections has been to use36

“pattern scaling” to downscale the projections of simple global energy-balance models. Pat-37

tern scaling relies on the assumption that regional climate responses are a linear function38

of global climate response, so that regional climate evolution can be captured by scaling a39

single pattern to the global mean temperature. The technique was introduced by Santer40

et al. (1990) as a means of comparing spatial patterns of climate response from different41

GCMs and has been widely used in subsequent years (e.g. Hulme and Raper (1995); Hulme42

and Brown (1998); Cabre et al. (2010); Dessai et al. (2005); Fowler et al. (2007); Harris43
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et al. (2006); Murphy et al. (2007)). Different possible techniques for obtaining patterns are44

reviewed in Mitchell (2003).45

The linearity assumption has been shown to be reasonable for centennial-scale projec-46

tions (e.g. Mitchell et al. (1999); Giorgi (2008)), but on some timescales the technique will47

be inappropriate, since different parts of the Earth warm at different rates. Furthermore,48

if the regional pattern of climate response were a function of the magnitude of warming,49

a single pattern would also not accurately capture the climate response to arbitrary CO250

scenarios even in equilibrium cases. Using the HadCM2 model, Mitchell (2003) showed that51

both the rate and the magnitude of forcing changes influence patterns of regional climate,52

and suggested approaches to pattern construction to minimize errors.53

We propose to overcome some of the limitations of pattern scaling through an alternative54

emulation approach based on a collection of precomputed climate model runs that allows55

us to capture rate dependencies in regional climate evolution. This collection of runs, or56

training set, is used to obtain estimates of the parameters in simple statistical models that57

describe temperature and precipitation as a function of past trajectories of radiative forcing58

due to CO2. The resulting tool allows us to reproduce (emulate) the output of an AOGCM59

under a large range of forcing scenarios. Once the emulator is constructed, emulation of a cli-60

mate scenario is effectively instantaneous, as it would be under pattern scaling. In contrast,61

climate projection from a state-of-the-art model can still take days to weeks even on the most62

powerful platforms. Since our training set is used only to estimate statistical parameters,63

the emulator is determined by a set of regional parameter values and requires negligible data64

storage. The simplicity and robustness of statistical emulation based on a modest training65

set makes it a promising tool for impacts assessment. Similar ideas have been previously66

proposed by Mitchell (2003), though execution was precluded because of lack of suitable67

collection of model runs, and recently explored by Holden and Edwards (2010) (See Section68

5 for comparison of approaches).69

In the remainder of this paper, Section 2 describes the collection of climate runs on which70
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our emulator is based; Section 3 introduces the statistical models for annual temperature71

and precipitation at a regional level and shows an example of emulation; and Section 472

develops emulation diagnostics and uses them both to assess the influence of training set73

size on emulation quality and to compare our emulation to pattern scaling. Finally, Section74

5 discusses our approach in comparison to other techniques for computer model emulation.75

We describe the particular requirements and characteristics of climate emulation over forcing76

scenarios, for which both the inputs and outputs are time series, and provide suggestions to77

guide future emulation approaches.78

2. Precomputed climate runs79

To explore the problem of emulating climate under arbitrary forcing scenarios, we built80

a collection of climate model runs to be used for training and prediction. These runs are81

driven by different trajectories of future CO2 concentration and have different initial condi-82

tions, but all are performed with the same model and same representation of model physics.83

Simulations were performed with the Community Climate System Model Version 3 (CCSM3)84

(Yeager et al. (2006), Collins et al. (2006)) at a relatively modest T31 atmospheric resolution85

(≈ 3.75◦× 3.75◦) and nominally 3 degree ocean resolution, a configuration that allows us to86

run multiple realizations of a wide range of multi-century scenarios. Since we are interested87

in capturing the effects of changing CO2 on climate, in all runs all other greenhouse gases88

and aerosols are held fixed at their pre-industrial values.89

The AOGCM runs used in the work described here consist of five scenarios, three with90

gradual rise and then stabilization of CO2 and two with abrupt changes (Figure 1). All91

scenarios follow estimated historical CO2 concentrations from 1870 to 2010 and then branch92

off into different future trajectories of evolving CO2 over the subsequent 189-439 years (end93

years range from 2199 to 2449). We denote the five scenarios as fast, moderate, slow, jump94

and drop. To enhance our ability to distinguish changes in mean climate from internal95
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variability, we simulated five realizations of each scenario with different initial conditions:96

specifically, we used restart files from years 410, 420, 430, 440 and 450 of the NCAR b30.04897

pre-industrial control run (Collins et al. 2006). In total, our collection of runs consists of98

more than 10,000 model years, though individual emulators used in this paper are trained99

using subsets of the runs.100

Multiple realizations of each scenario are useful both in producing emulators and in eval-101

uating emulator performance. We treat the five realizations of each scenario as statistically102

independent because they were generated with decadally-spaced restart files. The chaotic103

nature of the climate system means that changes in any initial conditions other than those104

of the deepest ocean are expected to produce essentially independent results after approxi-105

mately a decade (e.g. Branstator and Teng (2010), Collins (2002), Collins and Allen (2002))106

so we believe this assumption of independence reasonable. For similar reasons, runs under107

different scenarios but the same restart year should be very nearly independent within a few108

years after the scenarios diverge, but since all scenarios are identical before 2010, the results109

for runs with the same restart year are also identical until 2010. We avoid this problem by110

using runs with different restart years in our training sets.111

The choice of scenarios for the precomputed runs was not based on any formal design112

criteria and is not meant to be optimal in any sense. We deliberately chose some scenarios113

that were somewhat realistic and others with large changes in CO2 in order to be able to114

distinguish short and long term effects, but in general we sought simply to reproduce the115

kind of runs that would typically be available in pre-existing archives of climate model out-116

put. Impacts assessments often require emulation of multiple AOGCMs, but it would be117

prohibitively difficult for an individual research group to run multiple climate models to gen-118

erate optimal libraries for emulation. It is therefore useful to develop emulation techniques119

that are not critically sensitive to the characteristics of their training sets and that can make120

use of existing community multi-model resources such as the CMIP5 archive (Taylor et al.121

2003).122
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3. Statistical models for temperature and precipitation123

In this work, we emulate annual mean temperature and precipitation in climate projec-124

tions with simple statistical models that involve a mean function that varies in time plus125

a stochastic term. For the mean function, we chose simple functional forms relating tem-126

perature T and precipitation P to past trajectories of CO2 that capture physically justified127

relationships. We train emulators based on various subsets of our precomputed climate128

model runs, fitting the parameters of the statistical models using standard statistical meth-129

ods. (See Supplementary Material for more details.) The resulting emulators can then130

predict annual temperature and precipitation for arbitrary climate forcing scenarios. In the131

emulations shown here, we fit the statistical models not at native climate model spatial132

resolution (48 × 96 gridpoints for T31 resolution) but aggregated at subcontinental scale133

in 47 regions. The regions are modifications of those defined by Ruosteenoja et al. (2003),134

subdivided over the oceans to ensure that we separately emulate regions of qualitatively135

different precipitation response (Figure 4, or see Figure S1 for regional codes). Without136

regional aggregation, obtaining a stable fit of the statistical models parameters for T and137

P would require a significantly larger training set. Emulation can be extended to the grid138

scale through regional pattern scaling (see Section 4).139

a. Temperature140

A long body of research suggests that within the range of CO2 concentrations likely141

to be produced by anthropogenic activity, equilibrium global mean temperature change is142

proportional to log[CO2r], where [CO2r] is the ratio between current and preindustrial CO2143

concentrations (Manabe and Wetherald 1967; Forster et al. 2007). For policy analysis pur-144

poses, however, emulating equilibrium climate is less relevant than understanding the spatio-145

temporal climate changes that populations will face over the next century. We seek here to146

emulate the transient climate response when climate is a function not only of the present147
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value of [CO2r] but also of its past history. As mentioned before, even if pattern scaling were148

sufficient to reproduce equilibrium climate, i.e. if the equilibrium spatial distribution of tem-149

perature were linear with log[CO2r], it would not be sufficient in transient climates. Because150

different regions of the Earth warm at different rates, the spatial distribution of temperature151

anomalies in a given year during warming will not be a multiple of the equilibrium pattern.152

For emulation of temperature, we propose a representation that captures this dependence153

on past trajectories of CO2 via an infinite distributed lag model (Judge et al. (1980) ch.10)154

in which current temperature is dependent on a weighted sum of past log[CO2r](t):155

T (t) = β0 + β1
1

2
(log[CO2r](t) + log[CO2r](t− 1)) + β2

+∞∑
i=2

wi log[CO2r](t− i) + ε(t), (1)

where T (t) is the temperature at year t. Because temperature may show some auto-156

correlation, we assume the stochastic term ε(t) is an autoregressive model of order 1:157

ε(t) = φε(t − 1) + ν(t), where ν is a Gaussian white noise with unknown variance σ2.158

This model is able to capture the modest dependence in temperatures across years.159

The β coefficients in Equation (1) are physically interpretable: β0 is preindustrial temper-160

ature; β1 is the near-term response to changes in CO2, and β2 the slower response dependent161

on CO2 levels in prior years. This form gives us the flexibility to represent a temperature162

response characterized by multiple adjustment timescales, and is especially important when163

emulating scenarios with abrupt CO2 changes. Using the average log[CO2r] over years t and164

t− 1 for the short-term effect is somewhat arbitrary, but we have experimented with other165

forms for this term and not found anything clearly superior. Because we expect the influence166

of past radiative forcing to decrease as we go back in time, the weights wi in the long-term167

component should be chosen to decrease with the trajectory year i. We choose here a simple168

exponential decay of the weighting of past years: wi = ρ−2(1 − ρ)ρi with 0 < ρ < 1 so169 ∑∞
i=2wi = 1. (Note that we could also have taken the infinite sum in (1) to start at 0 rather170

than 2. The resulting fitted models would be negligibly different.) The model parameters are171

then the three βjs, ρ, φ and σ2. The first four parameters capture the mean evolution of the172

climate system averaged over initial conditions, a deterministic function of CO2 trajectory,173
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and the final two parameters describe the stochastic variability in the climate state about174

this mean, which differs between realizations (initial conditions). We discuss emulation of175

the stochastic behavior of both temperature and precipitation in Section 3c.176

It is important to point out several assumptions implicit in the choice of our functional177

form for temperature. First, the model assumes that, on average, equilibrium spatial tem-178

perature patterns are linear with log[CO2r], since when sufficient time has passed after179

stabilization of CO2 concentration, emulated mean temperature approaches180

β0 + (β1 + β2) log[CO2r]stab,

where the subscript stab indicates the CO2r level after stabilization. This assumption would181

likely break down in cases of extreme CO2 changes. Second, our functional form is ap-182

propriate only for centennial-scale or shorter emulation scenarios. Although in principle183

our approach allows us to emulate climate in any year for arbitrary CO2 scenarios, Equa-184

tion (1) should not be used for emulating considerably beyond the several-century time185

span of the training runs. This constraint arises not only because statistical models can-186

not be expected to capture processes not represented in the training set, but also because187

the simple exponential weights used here do not capture well the combined behavior of the188

decadal/centennial-scale warming of the upper ocean and the long-tail warming of the deep189

ocean over thousands of years (see Supplementary Figure S4).190

To construct an emulator, we derive parameter estimates from one or more training runs.191

(By “run” we mean a climate projection driven by a given scenario and begun from given192

initial conditions.) Throughout this manuscript, we focus on an emulator generated with a193

training set consisting of two runs: one realization each of the fast and jump scenarios with194

different restart years. The resulting emulator appears to track accurately the overall trend of195

out-of-training-set climate scenarios. Figure 2a-b shows emulations of the mean temperature196

trajectory for the slow and drop scenarios, superimposed with all five realizations of actual197

CCSM3 output for these scenarios. Emulation of the drop scenario does show slight misfit198

immediately following the sudden drop in CO2. This misfit can be reduced by using a more199

7



complex functional form, but introducing additional terms can lead to instability of the200

fit, and we consider the emulation of this physically extreme scenario to be reasonably good201

under the circumstances. (See Section 4 for a more extensive evaluation of emulation fidelity,202

and see Supplementary Materials for a table of parameter estimates and their standard errors203

for all regions.)204

b. Precipitation205

Precipitation in transient climates has been frequently described as a combination of a206

“fast” response that is a function of the changed forcing agent and a “slow” linear response to207

evolving temperature. The fast response is negative in the case of CO2, so that in scenarios208

with rising CO2, precipitation at a given temperature is lower than it would be at equilibrium209

for that temperature (Andrews and Forster 2010). The transient precipitation response was210

first discussed in detail by Allen and Ingram (2002), and the fast/slow framework became211

commonly accepted in later works (e.g. Bala et al. (2010); Cao et al. (2011)). These findings212

motivate the following regression model for precipitation (though see McInerney and Moyer213

(2012) for further discussion of underlying physics):214

P (t) = γ0 + γ1T̂ (t) + γ2 log[CO2r](t) + η(t), (2)

with γ1T̂ (t) and γ2 log[CO2r](t) the “slow” and “fast” terms, respectively, and T̂ (t) the mean215

emulated temperature from (1). We use T̂ (t) rather than T (t), the actual temperature in216

year t, because the physical processes underlying the model are likely distinct from those217

driving stochastic interannual variability. Since we found no clear evidence for dependence218

in the stochastic terms for precipitation in this model, the stochastic term η(t) is simply219

assumed to be Gaussian white noise with unknown variance τ 2. Once T̂ (t) is obtained from220

fitting (1), the parameters in (2) are estimated using linear regression. Joint emulation of221

temperature and precipitation including their stochastic components would require modeling222

the corresponding stochastic terms ε(t) for temperature and η(t) for precipitation jointly,223
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which we do not attempt here.224

The resulting emulated mean precipitation again matches well the overall trend in the225

CCSM3 output, although variability in precipitation is much larger than in temperature and226

trend prediction is therefore less informative (Figure 2c-d). We chose to show the equatorial227

West Pacific in Figure 2 because this region demonstrates one feature of our emulation that228

stands out in scenarios of abrupt CO2 change: a sharp spike in precipitation coincident229

with a drop in CO2 (Figure 2d), such that precipitation momentarily increases even while230

temperature is decreasing. This effect has a well-founded physical interpretation and has231

been shown clearly above variability in AOGCM output in more extreme scenarios in several232

recent works (e.g. Wu et al. (2010), McInerney and Moyer (2012)). Linear pattern scaling233

with global mean temperature change cannot capture this effect.234

c. Stochastic temperature and precipitation components235

While the mean emulations shown in Figure 2 capture the dependence of temperature236

and precipitation on CO2 trajectories, impacts assessments may require emulation that fully237

reproduces an actual climate simulation, including short-term variability. Many applications238

would therefore require addition of stochastic components to the mean emulator. A simple239

initial approach is to simulate this variability from our stochastic models and estimated240

parameters. This method implicitly assumes that the statistical characteristics of the error241

terms are invariant over time for any scenario and are the same for all scenarios. That242

assumption is unlikely to be exactly true, but appears to provide a satisfactory approximation243

for most regions in the scenarios tested here. That is, the simple stochastic model appears to244

capture the variability in the actual realizations of the CCSM3 temperature and precipitation245

(Figure 3a-b, which show emulated full simulations including stochastic components for246

the cases of Figure 2a and c, along with corresponding actual CCSM3 realizations). More247

quantitatively, CCSM3 output can be compared with the 95% prediction bands based on248

the emulators (Figure 3c-d). For the cases shown, the empirical coverage of the prediction249
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intervals are 0.9531 and 0.9545 for temperature and precipitation, respectively, very close to250

the nominal coverage of 0.95. Figure S3 shows empirical coverages for temperature for all251

regions and both the slow and drop scenarios; the results are close to 95% in all regions other252

than the Southern Ocean. The fact that our model does not provide an accurate substitute253

for CCSM3 output in the Southern Ocean is not unexpected because upwelling from the deep254

ocean complicates temperature evolution there. Misfit for the Southern Ocean is evident in255

multiple diagnostics of emulation performance; see Section 4.256

4. Diagnostics, training set size, and comparison with257

pattern scaling258

a. Evaluating the fit259

The appropriate evaluation of emulator performance depends on the purpose for which260

the emulator is used. For impacts assessments that have previously relied on global pattern261

scaling, one possible performance criterion is exceeding the emulation fidelity provided by262

pattern scaling. Other criteria could be that emulation error is small relative to differences263

in climate projections between AOGCMs, or small relative to initial conditions uncertainty264

in the emulated AOGCM. We discuss here various approaches to evaluating emulator per-265

formance. Evaluations are aided by having multiple realizations for each prediction scenario,266

allowing us to distinguish the mean climate trajectories from the stochastic component with-267

out assuming our mean model is correct. The test of empirical coverage of 95% prediction268

intervals discussed in Section 3 is one type of emulator evaluation, but not the most relevant269

for the main focus of this work, emulation of change in mean climate. We therefore seek270

additional diagnostics.271

Even if our emulation model (1) were strictly correct for all scenarios, the mean emulator272

generated from it would retain some uncertainty due to the limited size of the training273
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set used to estimate the model parameters. Confidence bands for the estimated regression274

function provide a natural way to quantify this uncertainty. Figure 3e-f shows the pointwise275

95% confidence bands along with the average of the five available CCSM3 realizations. (See276

Supplementary Materials for details.) The width of these bands are small relative to internal277

variability and agree well by eye with the average of the five CCSM3 realizations.278

These confidence bands assume that the underlying statistical model is correct. We279

consider two additional indices whose validity does not depend on knowing the form of280

the mean function. The index I1 measures emulation performance relative to the optimal281

emulation possible given initial condition uncertainty and I2 the trend in the data relative282

to initial condition uncertainty (i.e. how much of the variation in a climate time series could283

be explained by an emulator).284

The first index is related to what statisticians call the lack-of-fit statistic (see e.g. Mont-285

gomery (2012)). Let Tr(t) denote temperature for year t = 1, . . . , n (here, t = 1 corresponds286

to the year 2010, the year the scenarios diverge) and realization r = 1, . . . , R (here, R = 5).287

We compare the sum of squared deviations of the actual realizations from the emulated mean288

temperatures T̂ (t) to the sum of squared deviations of realizations from the average across289

realizations T̄ (t) = 1
R

∑R
r=1 Tr(t):290

I1 =

∑R
r=1

∑n
t=1(Tr(t) − T̂ (t))2

R
R−1

∑R
r=1

∑n
t=1(Tr(t) − T̄ (t))2

=
N1

O1

. (3)

The numerator N1 measures the actual performance of the emulator. The denominator291

O1 makes use of the multiple realizations we have under each scenario to give an unbiased292

estimate of the sum of squared errors for a hypothetical “perfect” emulator that, for each293

year t, reproduces the average temperature over an infinite number of realizations. The294

factor of R
R−1 in O1 takes account of the fact that we do not know this perfect emulator but295

use T̄ (t) as an estimate of it. A value of 1 for I1 is therefore the best possible performance296

from an emulator. (Occasional values less than 1 may however arise due to random variation297

in N1 and O1.)298

A value I1 close to 1 has different implications depending on the noise in the model output299
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being emulated. In particular, if the noise is large compared to the trend in the data, then300

I1 will likely be close to 1 even if the emulation poorly captures the small underlying trend.301

To quantify the degree of variation in the data attributable to the trend, we construct an302

index whose denominator is that of I1 but whose numerator now describes the trend itself:303

I2 =
n

n−1
∑R

r=1

∑n
t=1(Tr(t) − T̄r)

2

R
R−1

∑R
r=1

∑n
t=1(Tr(t) − T̄ (t))2

(4)

where T̄r is the mean across time of each realization: T̄r = 1
n

∑n
t=1 Tr(t). Note that this index304

depends only on the AOGCM data and is completely independent of the emulation. If the305

mean AOGCM data shows no trend, then the numerator and the denominator are unbiased306

estimates of the same quantity and I2 should be close to 1. The conditions I2 >> 1 and307

I1 ≈ 1 would mean that there is a trend to emulate and that the emulator captures it well.308

If I1 is comparable to I2, then the emulator would not be useful for tracking the evolution of309

the mean. As interannual variability in precipitation is larger relative to trend than it is in310

temperature (e.g. Figure 2, see also Deser et al. (2012)), I2 values tend to be much smaller311

for precipitation than for temperature (compare Figures 4 and 9).312

These indices suggest that the temperature emulator described previously in Section 3313

(trained by one realization each of the fast and jump scenarios) produces near-optimal mean314

emulation of nearly all regions in the physically reasonable slow stabilization scenario and315

only modestly degraded quality in the extreme drop scenario. (Figure 4 shows I1 and I2316

values for all regions.) For the slow scenario, the emulated mean functions are essentially317

optimal (I1 very nearly 1) throughout the northern hemisphere and equatorial region, and318

close to optimal (I1 ≤ 1.13) everywhere except in part of the Southern Ocean. For the drop319

scenario, unsurprisingly, the emulator predictions perform substantially worse in all regions,320

but even here, we believe this lack of fit may be small compared to other possible sources321

of error in forecasting climate, such as differences between AOGCMs or differences between322

AOGCMs and reality, and so would still serve as a useful emulator. The largest discrepancies323

arise for both scenarios in a single portion of the Southern Ocean. Values of I1 substantially324

larger than 1 are not necessarily associated with a poor skill of the emulator relative to other325
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techniques, but do indicate that the statistical model for the region could be improved.326

In the end, whether an emulator of an AOGCM is adequate will depend on the specific327

application. Because we make no effort to capture spatial dependence in the stochastic terms328

between regions, the emulator would be less appropriate for studies that involve large-scale329

spatial correlations in weather, e.g. global droughts or jet stream shifts. (See Castruccio and330

Stein (2013) for one approach to emulating the stochastic component of annual tempera-331

tures in climate model output that captures both spatial and temporal dependence.) We332

also do not capture any dependence between the stochastic components of temperature and333

precipitation within a region. However, for an impacts assessment requiring annual tempera-334

tures in a given region, any differences between the emulated temperature and the AOGCM335

temperature showed in, for example, Figure 3a would most likely be inconsequential.336

b. Training set size: how many scenarios/realizations?337

One of the advantages of our approach is that it permits emulation with a relatively small338

training set of precomputed runs. To determine the trade-off between size of the training set339

and goodness of fit, we examined the performance of the emulator with a varying number340

of scenarios and realizations. Investigating the impact of the number of realizations on341

emulation quality is the more straightforward test, involving computing I1 for temperature342

emulation over a range of number of realizations used. Figure 5b shows results from an343

experiment in which the moderate scenario was emulated with from 1 to 5 realizations of344

the fast scenario as the training set. Increasing the number of realizations of each training345

scenario produces more accurate emulations, but the difference between the use of even 1346

and 2 realizations is small, and there is diminishing return gained from further increasing347

the number of realizations in the training set. Increasing the number of realizations further348

also does not reduce the misfit of the outlier regions with highest I1 values, all of which lie349

in the Southern Ocean.350

Testing the value added by additional scenarios is a less well-defined problem, since351
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different choices of scenarios will affect the emulation differently. Nevertheless, we attempt352

a test by conducting emulations with increasing numbers of scenarios. Again we emulate353

temperature in the moderate scenario beginning with a training set consisting of a single354

realization of slow and successively adding to the training set fast, jump, and drop (Figure355

5a), which is a rough attempt to order the training scenarios from most to least similar356

to the prediction scenario. The results show that addition of scenarios first improves and357

then degrades the emulation. We interpret this result as implying that our simple statistical358

model cannot perfectly represent all scenarios, i.e. that best values of (β0, β1, β2) and ρ in359

Equation (1) vary somewhat with scenario. Including scenarios in the training set very360

different from the one emulated can then result in worse performance. Figure 5 shows that361

even a single slow or a single fast realization yields a fairly good emulator of the moderate362

scenario. However, we would be cautious about building emulators when AOGCM output363

is available for only one scenario since that would leave no opportunity to check for stability364

of the regression parameters across scenarios.365

Our tests suggest that the choice of training set is not especially crucial if prediction and366

training scenarios are similar, but more care would be needed for emulating extreme sce-367

narios. One approach might be to choose different training sets according to the prediction368

scenario. In this case one algorithm might be to (1) order the available forcing scenarios369

in the training set by their similarity to the prediction scenario; (2) fit the emulator using370

first only the nearest training scenario, then the two nearest, and so on; and (3) choose the371

emulator with the smallest training set that offers stable parameter estimations as measured372

by the width of the 95% confidence bands for the mean emulator (e.g. Figure 3e-f). Further373

research would be needed to actually apply this approach in the context of integrated assess-374

ments over many possible scenarios, both to define the notion of similarity and to automate375

implementation. In this work we have focused simply on demonstrating that in some circum-376

stances, emulation requires only a limited training set of a few scenarios and realizations.377

This finding supports the utility of statistical emulation based on modest training sets for378
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uses such as policy analysis or model intercomparison.379

c. Comparison with pattern scaling380

One of the motivations for our approach to statistical emulation is to offer an improve-381

ment on pattern scaling by capturing the dependencies on rate of forcing change that make382

transient climates different from equilibrium ones. We therefore test the fidelity of our383

mean emulation against pattern scaling to global mean temperature. To provide a direct384

comparison, we first evalute performance of the regional climate projections generated by385

our statistical mean emulator to regional projections generated by pattern-scaling to global386

mean temperature (GMT). Second, we evaluate an extension of our approach that allows387

us to emulate climate at native model spatial resolution, again comparing to GMT pattern388

scaling. The latter test may be more relevant for policy analysis purposes, since impacts389

assessments often require fine-scale climate projections. We perform grid-scale emulation by390

a hybrid approach, first statistically emulating regional temperature and precipitation and391

then downscaling by pattern scaling to the regional mean temperatures.392

For the comparison of regional emulation, we construct patterns of temperature and pre-393

cipitation for our 47 regions from all realizations in our training set (fast and jump). Pattern394

scaling assumes that all regional temperature anomalies Ti(t) − Ti,PI are linear with global395

mean temperature anomaly TGM(t) − TGM,PI. (The subscripts PI and GM denote preindus-396

trial values and global mean, respectively.) We derive the pattern by linear regression on all397

data in the training set assuming398

Ti(t) − Ti,PI = αi (TGM(t) − TGM,PI) + εi(t) (5)

and estimating αi by least squares. Patterns for temperature and precipitation are shown399

in Figures 6 and 7, with the fitted relationship between the regional climate variable and400

GMT shown in red. These figures provide a visual check on the linearity assumption behind401

pattern scaling and on the variability in regional temperature and precipitation.402
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GMT in a typical pattern scaling emulation would usually be obtained by running an403

energy-balance model tuned to match the climate sensitivity of the AOGCM to be emulated.404

Here we forgo the use of an additional external model and instead simply use the GMT from405

our statistical emulator. This simplification gives pattern scaling a slight artificial advantage406

over a more realistic comparison. Nevertheless, when comparing to emulation of temperature407

in the same scenarios shown previously (slow and drop), statistical emulation matches or408

outperforms pattern scaling in most regions (Figure 8). Comparing Figures 4 and 8, we409

see that for the slow scenario, which has the smallest transient response and emulation410

is easiest, the regional differences in performance for our emulator and pattern scaling as411

measured by I1 are small; these differences are much larger for the more challenging drop412

scenario. For precipitation, I2 values are much smaller than for temperature (see Figure 9),413

so the differences in I1 values for the two emulators are unsurprisingly smaller. Nevertheless,414

in both prediction scenarios used here, statistical emulation conveys an advantage in most415

regions outside the Southern Ocean (which is problematic for both methods).416

For a grid-scale comparison, we use a hybrid approach, emulating regional temperature417

and precipitation and then downscaling by applying pattern scaling at the regional level.418

This approach consists of four steps:419

1. For each region i, use the training set to fit parameters for regional Ti and Pi420

2. With those parameters, statistically emulate regional Ti and Pi for the prediction scenario421

3. For each region i, use the training set to obtain regional patterns of grid-scale T and P422

4. Predict grid-scale T and P by multiplying the regional patterns by emulated regional Ti423

This approach retains the benefits of statistical emulation in capturing nonlinearities in424

regional climate evolution but allows projections at small spatial scale.425

Step 3, estimating for each region i a grid-resolution pattern that scales with respect426

to regional temperature, is mathematically similar to the global pattern scaler described427

previously, where we obtained a regional-resolution pattern that scales with respect to global428

mean temperature. For T emulation, we use all data in the training set to fit the parameters429
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in430

T ((L, `), t) − TPI(L, `) = α(L,`)(Ti(t) − Ti,PI) + ε(L,`)(t), (6)

where T ((L, `), t) is temperature at a model gridpoint at latitude L and longitude `, and431

the i subscript again refers to subcontinental regions. The grid-level parameters α(L,`) are432

estimated by least squares. We compare this hybrid pattern scaling-emulator with the simple433

global pattern scaling described previously: the pattern is at grid level and the scaler is GMT,434

which we obtain from our statistical emulation. In the case of temperature emulation, the435

very simple hybrid approach outperforms pattern scaling for most gridpoints outside the436

polar regions, particularly for the continental areas of greatest interest for impacts assessment437

(Figure 10).438

5. Alternative emulation strategies439

In the previous section we compared our climate model emulation approach to pattern440

scaling, the most commonly-used approach for emulation of climate model output in the im-441

pacts assessment community (see e.g. Santer et al. (1990); Hulme and Raper (1995); Hulme442

and Brown (1998); Cabre et al. (2010); Dessai et al. (2005); Fowler et al. (2007); Harris443

et al. (2006); Murphy et al. (2007)). However, interest is growing in alternative approaches,444

and it is therefore useful to compare our technique with more complex emulation strategies445

proposed in the recent literature (Rougier et al. (2009); Holden and Edwards (2010); Wilks446

(2012); Vecchi et al. (2011); Murphy et al. (2007)). These strategies include the empirical447

orthogonal function (EOF) regression of Holden and Edwards (2010) and Gaussian process448

modeling (henceforth “GP modeling”), a standard method for emulating the output of de-449

terministic computer models (Sacks et al. 1989; Santner et al. 2003; Kennedy and O’Hagan450

2001; Oakley and O’Hagan 2002; Rougier et al. 2009; O’Hagan 2006). For climate models,451

Gaussian processes have mainly been used to emulate over physical parameters, although452

(Holden and Edwards 2010) raise the prospect of using Gaussian processes for forcing sce-453
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nario emulation. A number of authors have built emulators over physical parameters in454

order to calibrate a climate model (Sanso et al. 2008; Sanso and Forest 2009; Bhat et al.455

2012; Drignei et al. 2008).456

The GP approach to computer model emulation assumes that the output of interest457

is a Gaussian process in some set of inputs that vary across model runs. Among others,458

Challenor et al. (2010) and Rougier (2008) have discussed extensions to the GP approach to459

multivariate climate output, and several authors have proposed approaches for multivariate,460

time-dependent output: projection on a lower dimensional space via principal component461

analysis (Wilkinson 2010; Higdon et al. 2008) or wavelet decomposition (Bayarri et al. 2007),462

choice of a single representative output (Challenor et al. 2006) or a spatial aggregated average463

of it (Hankin 2005), kernel mixing and matrix identities (Bhat et al. 2012), and dynamically464

autoregressive models (Fei and West 2009).465

Using Gaussian processes to emulate computer models is attractive in many circum-466

stances because it does not require the prior assumption of any particular parametric form467

for the relationship between inputs and outputs and provides an internally consistent ap-468

proach to estimating the uncertainties of the emulator based on the GP model (Sacks et al.469

1989; Oakley and O’Hagan 2002). This flexibility comes at some cost, since it is intrinsically470

difficult to estimate an arbitrary function nonparametrically in high dimensions. Neverthe-471

less, to give a specific example, Challenor et al. (2006) fit a GP emulator to climate model472

output with 17 input parameters and only 100 model runs. This fitting is aided by the fact473

that most of the input parameters appear to have little impact on the output of interest.474

Emulation over physical parameters that are globally constant has been done with very few475

model runs by exploiting the information available in a spatially resolved climate model that476

provides many informative outputs about these parameters from each run (Sanso et al. 2008;477

Sanso and Forest 2009; Bhat et al. 2012). In contrast, for forcing scenario emulation, we478

should not assume that any of the statistical parameters in our emulators (1) and (2) are479

constant across all regions, since accounting for regional differences in patterns of climate480
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change is the whole point of our approach. We instead exploit the multiple observations in481

time rather than in space to build an emulator with few runs.482

In our view, emulating a long time-series of spatially resolved climate variables over a483

wide range of forcing scenarios is a highly specialized problem, and general techniques for484

multivariate computer model emulation are not the most appropriate tools to approach it.485

Choosing an appropriate emulation strategy requires recognition of three key issues: 1) the486

desired output variables are a function of the previous history of CO2 or other forcings and487

so the emulator inputs should be functions of past trajectories; 2) because climate response488

is dependent only on these past trajectories, the statistical model that relates model inputs489

to outputs is the same for any given year (i.e., the βj’s and ρ in (1) do not depend on t);490

and 3) the appropriate means of reducing the dimensionality of the problem is not to limit491

the inputs, which would reduce the types of forcing trajectories that can be emulated, but492

instead to reduce the number of parameters that need to be fit by using a structured model493

of the functional form describing climate response.494

Reducing climate emulation to a tractable problem necessarily involves some compro-495

mises. The trade-offs of different choices are illustrated by comparing our approach to that496

of Holden and Edwards (2010), whose goal is the most similar to ours among published497

works on climate model emulation of which we are aware. Holden and Edwards (2010)498

share our motivation of using a collection of climate runs and relatively simple statistical499

techniques to produce computationally efficient climate predictions for the purposes of in-500

tegrated assessment modeling, although they include both forcing scenarios and 19 climate501

model parameters as inputs, whereas we only consider forcing scenarios. Both their and our502

approach limit the number of parameters that need to be estimated in the statistical model,503

although with some noticeable differences.504

Holden and Edwards (2010) emulate decadal average temperature at a single time period505

(2100) based on annual CO2 levels between 2005 and 2105. If one were to directly regress506

each output for this problem (temperature changes for each pixel of the model) on the507
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100 inputs (CO2 in each year from 2005 to 2105), the resulting parameter estimates would508

likely be unstable and yield problematic predictions under some CO2 trajectories. To obtain509

outputs with a higher signal to noise ratio, Holden and Edwards (2010) consider just the five510

principal EOFs rather than results for each individual grid point as the outputs. To reduce511

the number of regression parameters that need to be estimated for each output, they consider512

only CO2 trajectories following a specific functional form (a cubic polynomial), so that the513

regression is made on the three polynomial parameters (the polynomial is constrained to514

equal a fixed value in 2005) rather than on each of the 100 years of the CO2 time series. The515

emulation problem thereby simplifies to a regression of five outputs on three parameters of a516

CO2 trajectory. This simplicity permits Holden and Edwards (2010) to extend their analysis517

to include emulation over physical parameters.518

These choices make emulation possible, but with several limitations. Reducing spatial519

dimensionality of grid level output by using EOFs rather than our use of sub-continental520

regions is a reasonable choice, though we believe the regional approach makes interpretation521

of results somewhat easier. However, restricting CO2 trajectories to some simple functional522

form described by a small number of parameters (such as cubic polynomials) forgoes the523

flexibility needed for integrated assessment problems in which CO2 emissions must be allowed524

to vary with economic activity, whose own growth may be complex. The restriction to cubic525

polynomials also precludes modeling scenarios with abrupt changes in CO2 levels.526

A more fundamental set of limitations results from formulating the output as a function527

of the CO2 concentrations for a fixed set of years (which we term a “fixed timeframe trajec-528

tory”) rather than as a past trajectory of CO2 concentrations. Specifically, when using fixed529

timeframe trajectories, the only model output that can be used for emulation are results for530

those years over which the prediction is sought. By contrast, using past trajectories permits531

use of any model runs covering any years to build a single emulator that allows predictions532

for all years. The limitation is less apparent in Holden and Edwards (2010) because they533

make only a single prediction in time (a change in decadal averages). If, however, their534
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collection of climate model runs were used to predict temperature in an earlier period such535

as 2021–2030, then the fixed timeframe approach would require excluding all available model536

output after 2030. Furthermore, and perhaps more importantly, with a fixed timeframe tra-537

jectory, one would have to build and fit a new statistical model for each time point at which538

one wants to predict, whereas past trajectories can be used to generate a single emulator for539

predictions at all time points. Because the past trajectory approach uses all information in540

the training runs to build a single emulator, we can produce a stable emulator with much541

less training data. In some circumstances, we were able to build an effective emulator based542

on a single run (see Figure 5) and can predict a whole series of annual average temperatures,543

whereas Holden and Edwards (2010) use 245 runs and predict only a single temperature544

(itself a decadal average). As we have noted, Holden and Edwards (2010) also include vari-545

ation in climate model parameters, but even with a fixed climate model parametrization,546

they would need at least three runs to estimate the three parameters related to their cubic547

polynomial representation of the forcing scenario. The requirement for a large training set in548

turn led Holden and Edwards (2010) to use a climate model of only intermediate complexity,549

GENIE-2 (Lenton et al. 2007).550

While the functional form we chose in (1) is somewhat arbitrary, no further increase551

in complexity seemed warranted. With the runs available to us, explorations with several552

more complex functional forms did not yield substantially better emulation performance553

(lower I1) for centennial-scale predictions. On the other hand, models with fewer parameters554

than (1) that we have considered resulted in noticeable degradation of prediction skills for555

some scenarios. Our finding that temperature emulations in the somewhat realistic slow556

scenario yield I1 values very near 1 in nearly all regions (e.g. Figure 4a) implies that even557

the simple approach we describe leaves little room to further improve emulation of the mean558

temperature evolution over timescales typical of impacts assessments.559

Although our emulators of mean trajectories worked very well in some circumstances,560

there is still room for improvement in several categories: for precipitation (where trend is561
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small relative to variability), for scenarios with extremely rapid CO2 changes, and for longer-562

time-scale scenarios. In all cases, a larger collection of climate model runs would be necessary563

to explore these issues. Multiple millennial-scale training runs would allow adding a second564

lag term in the statistical models to account for the qualitatively different climate response565

at long timescales. Runs with substantial jumps in consecutive years could address the misfit566

after rapid CO2 changes by allowing separate contributions from each of the two most recent567

years rather than taking their average. Finally, a larger collection of scenarios might make it568

feasible to allow the regression parameters to vary smoothly in some way with the prediction569

scenario, or, more in keeping with the approach here, the past trajectory. That is, we could570

construct a model that views these parameters as a function of the past trajectory, possibly571

as a multivariate GP after some dimension reduction on the past trajectory.572

6. Conclusions573

Statistical emulation of climate model output from computationally demanding AOGCMs574

has the potential to make climate projections capturing the full temporal dynamics of tran-575

sient climates readily available for impacts assessment, policy analysis, and other applica-576

tions. Developing methods that can function reasonably well with very small training sets577

is essential, however, to permit emulation to be a widely useful tool. The simple statistical578

approach we have outlined here permits us to credibly emulate climate model output with a579

very small training set, even in some cases of severe scenario extrapolations. Small training580

set size is permitted by two key aspects of our approach: treating emulation inputs (CO2581

concentrations here) as past trajectories rather than fixed timeframe trajectories and using582

simple, physically-based statistical models that capture the relationships between CO2 and583

temperature or precipitation. The consequence is that a small training set produces rich584

results.585

While the collection of runs used here was based on a fairly coarse spatial resolution586
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climate model, the proven efficiency of our emulator should permit its use for emulating587

more state-of-the-art models based on quite small training sets. This approach performs588

at least as well as pattern scaling in all circumstances we have examined and substantially589

better in many. It therefore can be seen as a natural alternative for fast climate impacts590

assessments, saving orders of magnitude in computational time over running a full AOGCM.591
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List of Figures740

1 CO2 scenarios used for building the collection of runs. We refer to these741

throughout the paper as 1- slow, 2- moderate, 3- fast, 4- jump and 5- drop742

scenario. All scenarios start at year 1870. Some scenarios extend beyond the743

range shown here: slow, moderate and fast end at year 2449, while jump ends744

at 2199 and drop at 2399. 34745

2 An example of temperature emulation for the North Pacific West (NPW)746

region (a-b), chosen as representative of a region with significant change, and747

of precipitation emulation for the Equatorial Pacific West (EPW) region (c-d),748

chosen to highlight interesting transient precipitation behavior. Panels a and c749

show the emulated slow scenario and b and d the drop scenario. The emulator750

was trained by one realization each of the fast and jump scenarios. The751

solid red line represents the emulated mean function and the gray lines shows752

the five CCSM3 realizations for the scenarios. Emulation captures expected753

transient precipitation behavior in which precipitation anomaly is a function754

of the rate of change in radiative forcing. Note that the trend in temperature755

is larger relative to stochastic variability than it is for precipitation. We756

define diagnostics of emulation goodness-of-fit I1 and trend-vs-variability I2757

in Section 4a. Values of (I1, I2) for the emulations shown here in panels a-d758

are (1.01, 11.23), (1.94, 35.82), (1.02, 1.18) and (1.09, 1.41), respectively; I2 is759

much larger for temperature, as expected. 35760
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3 An example of uncertainty quantification for temperature in the North Pacific761

West (NPW) region (a,c,e), and for precipitation emulation for the Equato-762

rial Pacific West (EPW) region (b,d,f). All panels show the emulated slow763

scenario. The emulator was trained by one realization each of the fast and764

jump scenarios. The first row (a-b) shows an example of emulated realiza-765

tions. The gray lines represent the five CCSM3 realizations and the red lines766

the five emulated realizations (with an offset of 1 degree for temperature and767

1000 mm/yr for precipitation). The actual runs and those simulated via the768

emulator appear to be qualitatively similar. The second row (c-d) shows the769

five superimposed CCSM3 realizations in gray, and the dashed red lines the770

95% prediction bands from the emulator. Empirical coverage is 0.9531 for771

(c) and 0.9545 for (d), very close to the nominal 95% level. The bottom row772

(e-f) plots the mean across the five CCSM3 realizations of the slow scenario in773

gray, and the dashed red lines represent the pointwise 95% confidence bands774

based on the emulator. The bands are very narrow, especially for tempera-775

ture, highlighting the ability of the emulator to capture the mean trend with776

very high precision. 36777

4 Emulation indices for all regions for the regional temperature emulation de-778

scribed in the text and shown in Figure 2. Large font is the “emulation opti-779

mality” index I1 (×100) and small font the “trend” index I2. Low I2 means780

there is little trend relative to noise and the I1 index is not informative, even781

if close to 100 (optimal emulation). Top panel shows the slow and bottom782

panel the drop scenarios. Emulation is worse for the physically extreme drop783

scenario, as expected, but is generally close to the optimal value of 1 in most784

inhabited regions. All indices have been computed between year 2010 and the785

farthest time point (2449 for slow, 2399 for drop). 37786
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5 Boxplots of the fit index (I1) for various numbers of realizations (b) and sce-787

narios (a) in the training set for mean emulation of the moderate stabilization788

scenario. The training sets for the realization test (b) are made up of 1-5 re-789

alizations of the fast scenario; those for the scenario test (a) are made up of a790

single realization of slow and then adding, successively, one realization of fast,791

jump and drop. Panel (b) shows adding realizations of a single scenario offers792

a modest benefit and (a) shows that adding scenarios too dissimilar from the793

test case can actually degrade emulator performance. Box-and-whisker plots794

exclude severe outliers, which are shown with their regional codes. Four of795

the five outliers lie in the polar regions; see supplementary material Figure S1796

for locations. 38797

6 Construction of regional pattern scaling for temperature: linear regressions of798

regional temperature anomalies on GMT. Data used are 60 years from 2010 to799

2070 (we picture a subset of the data in this figure for visualization purposes)800

for all 47 regions in the standard training set consisting of the fast and jump801

scenarios. The two scenarios are shown in different colors. Regional subfigures802

are arranged to approximate their geographic distribution (north at top) to803

give an idea of spatial patterns. Subfigures share a consistent y-axis scale, so804

that differences in warming rate and variability may be seen by eye. 39805

7 Construction of regional pattern scaling for precipitation: linear regressions806

of regional precipitation anomalies on GMT, as in Figure 6 for temperature.807

Because precipitation anomalies differ widely between regions, y-axis scales808

(in % anomaly) are shown separately for each subfigure. 40809
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8 Comparison between statistical emulation and pattern scaling for regional810

temperature. Training set, predicted scenarios, and time range for calculating811

indices are as in Figure 4. The top number shown in each region is the log812

ratio of the temperature fit indices I1 for the statistical model (numerator)813

and pattern scaling (denominator), multiplied by 100 for clarity. Negative814

numbers mean that statistical emulation outperforms pattern scaling. The815

small type gives the trend index I2, which does not depend on the emulator.816

For the slow scenario (top), the median log ratio across all the regions times817

100 is −1.35 (with 10% and 90% quantiles are of −2.94 and 0.93), indicating818

a modest advantage from statistical emulation. Statistical emulation provides819

stronger benefits for the drop scenario: the median log ratio is −7.42 (with820

10% and 90% quantiles of −30.08 and 10.68). 41821

9 Comparison between statistical emulation and pattern scaling for regional822

precipitation. Quantities shown are as in Figure 8. The high variability in823

precipitation leads to smaller I2 values and reduces the distinction between824

emulation methods. For the slow scenario, the median log ratio of I1 across825

all regions (times 100) is −0.40 (with 10% and 90% quantiles of −1.74 and826

0.23); for the drop scenario it is −0.93 (with 10% and 90% quantiles of −5.70827

and 5.91). 42828

10 Emulating temperature at grid resolution and comparison with pattern scal-829

ing. On the left, log ratio of the fit index (I1) for statistical emulation of830

the drop scenario over pattern scaling. This is the grid-scaled case of Figure831

8 bottom panel. Negative values (blue) indicate that statistical emulation832

outperforms pattern scaling. On the right, the average log ratio for different833

latitude bands. Statistical emulation generally outperforms pattern scaling834

outside the polar regions. 43835
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Fig. 1. CO2 scenarios used for building the collection of runs. We refer to these throughout
the paper as 1- slow, 2- moderate, 3- fast, 4- jump and 5- drop scenario. All scenarios start
at year 1870. Some scenarios extend beyond the range shown here: slow, moderate and fast
end at year 2449, while jump ends at 2199 and drop at 2399.
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Fig. 2. An example of temperature emulation for the North Pacific West (NPW) region (a-
b), chosen as representative of a region with significant change, and of precipitation emulation
for the Equatorial Pacific West (EPW) region (c-d), chosen to highlight interesting transient
precipitation behavior. Panels a and c show the emulated slow scenario and b and d the drop
scenario. The emulator was trained by one realization each of the fast and jump scenarios.
The solid red line represents the emulated mean function and the gray lines shows the five
CCSM3 realizations for the scenarios. Emulation captures expected transient precipitation
behavior in which precipitation anomaly is a function of the rate of change in radiative
forcing. Note that the trend in temperature is larger relative to stochastic variability than
it is for precipitation. We define diagnostics of emulation goodness-of-fit I1 and trend-vs-
variability I2 in Section 4a. Values of (I1, I2) for the emulations shown here in panels a-d
are (1.01, 11.23), (1.94, 35.82), (1.02, 1.18) and (1.09, 1.41), respectively; I2 is much larger for
temperature, as expected.
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Fig. 3. An example of uncertainty quantification for temperature in the North Pacific West
(NPW) region (a,c,e), and for precipitation emulation for the Equatorial Pacific West (EPW)
region (b,d,f). All panels show the emulated slow scenario. The emulator was trained by
one realization each of the fast and jump scenarios. The first row (a-b) shows an example
of emulated realizations. The gray lines represent the five CCSM3 realizations and the red
lines the five emulated realizations (with an offset of 1 degree for temperature and 1000
mm/yr for precipitation). The actual runs and those simulated via the emulator appear
to be qualitatively similar. The second row (c-d) shows the five superimposed CCSM3
realizations in gray, and the dashed red lines the 95% prediction bands from the emulator.
Empirical coverage is 0.9531 for (c) and 0.9545 for (d), very close to the nominal 95% level.
The bottom row (e-f) plots the mean across the five CCSM3 realizations of the slow scenario
in gray, and the dashed red lines represent the pointwise 95% confidence bands based on the
emulator. The bands are very narrow, especially for temperature, highlighting the ability of
the emulator to capture the mean trend with very high precision.
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Fig. 4. Emulation indices for all regions for the regional temperature emulation described
in the text and shown in Figure 2. Large font is the “emulation optimality” index I1 (×100)
and small font the “trend” index I2. Low I2 means there is little trend relative to noise
and the I1 index is not informative, even if close to 100 (optimal emulation). Top panel
shows the slow and bottom panel the drop scenarios. Emulation is worse for the physically
extreme drop scenario, as expected, but is generally close to the optimal value of 1 in most
inhabited regions. All indices have been computed between year 2010 and the farthest time
point (2449 for slow, 2399 for drop).

37



slow fast jump drop
0.95

1

1.05

1.1

1.15

1.2

1.25

I 1 NNE

NNA
SPEARL

ARO

ANL

AOP

AOP

AOI

AOP

AOI
SPE

IND

1 2 3 4 5

ANL

AOP

AOI

ANL

AOIAOP

AOP

AOI

AOP

AOI

AOP

AOI

number of realizationstype of scenarios (cumulative)

(a) (b)

Fig. 5. Boxplots of the fit index (I1) for various numbers of realizations (b) and scenarios (a)
in the training set for mean emulation of the moderate stabilization scenario. The training
sets for the realization test (b) are made up of 1-5 realizations of the fast scenario; those for
the scenario test (a) are made up of a single realization of slow and then adding, successively,
one realization of fast, jump and drop. Panel (b) shows adding realizations of a single scenario
offers a modest benefit and (a) shows that adding scenarios too dissimilar from the test case
can actually degrade emulator performance. Box-and-whisker plots exclude severe outliers,
which are shown with their regional codes. Four of the five outliers lie in the polar regions;
see supplementary material Figure S1 for locations.
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Fig. 6. Construction of regional pattern scaling for temperature: linear regressions of re-
gional temperature anomalies on GMT. Data used are 60 years from 2010 to 2070 (we picture
a subset of the data in this figure for visualization purposes) for all 47 regions in the standard
training set consisting of the fast and jump scenarios. The two scenarios are shown in dif-
ferent colors. Regional subfigures are arranged to approximate their geographic distribution
(north at top) to give an idea of spatial patterns. Subfigures share a consistent y-axis scale,
so that differences in warming rate and variability may be seen by eye.
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Fig. 7. Construction of regional pattern scaling for precipitation: linear regressions of
regional precipitation anomalies on GMT, as in Figure 6 for temperature. Because pre-
cipitation anomalies differ widely between regions, y-axis scales (in % anomaly) are shown
separately for each subfigure.
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Fig. 8. Comparison between statistical emulation and pattern scaling for regional tempera-
ture. Training set, predicted scenarios, and time range for calculating indices are as in Figure
4. The top number shown in each region is the log ratio of the temperature fit indices I1
for the statistical model (numerator) and pattern scaling (denominator), multiplied by 100
for clarity. Negative numbers mean that statistical emulation outperforms pattern scaling.
The small type gives the trend index I2, which does not depend on the emulator. For the
slow scenario (top), the median log ratio across all the regions times 100 is −1.35 (with 10%
and 90% quantiles are of −2.94 and 0.93), indicating a modest advantage from statistical
emulation. Statistical emulation provides stronger benefits for the drop scenario: the median
log ratio is −7.42 (with 10% and 90% quantiles of −30.08 and 10.68).
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Fig. 9. Comparison between statistical emulation and pattern scaling for regional precip-
itation. Quantities shown are as in Figure 8. The high variability in precipitation leads to
smaller I2 values and reduces the distinction between emulation methods. For the slow sce-
nario, the median log ratio of I1 across all regions (times 100) is −0.40 (with 10% and 90%
quantiles of −1.74 and 0.23); for the drop scenario it is −0.93 (with 10% and 90% quantiles
of −5.70 and 5.91).
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Fig. 10. Emulating temperature at grid resolution and comparison with pattern scaling.
On the left, log ratio of the fit index (I1) for statistical emulation of the drop scenario over
pattern scaling. This is the grid-scaled case of Figure 8 bottom panel. Negative values (blue)
indicate that statistical emulation outperforms pattern scaling. On the right, the average
log ratio for different latitude bands. Statistical emulation generally outperforms pattern
scaling outside the polar regions.
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